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Abstract: This paper studies the private key generation of a cooperative pairwise-independent network (PIN) with M + 

2 terminals (Alice, Bob and M relays), M ≥ 2. In this PIN, the correlated sources observed by every pair of terminals 

are independent of those sources observed by any other pair of terminal. In the PIN, the pairwise source observed by 

every pair of terminals is independent of those sources observed by any other pairs. Secrecy is required from an 

eavesdropper that has access to the public inter-terminal communication. All the terminals can communicate with each 

other over a public channel which is also observed by Eve noiselessly. the PK needs to be protected not only from Eve 

but also from the two relays.  The objective is to generate a private key between Alice and Bob under the help of the M 

relays; such a private key needs to be protected not only from Eve but also from individual relays simultaneously. The 

private key capacity of this PIN model is established, whose lower bound is obtained by proposing a novel random 

binning (RB) based key generation algorithm, and the upper bound is obtained based on the construction of M 

enhanced source models. PK generation algorithms are extended to a cooperative wireless network, where the 

correlated source observations are obtained from estimating wireless channels during a training phase. The two bounds 

are shown to be exactly the same. Then, we consider a cooperative wireless network and use the estimates of fading 

channels to generate private keys. It has been shown that the proposed RB-based algorithm can achieve a multiplexing 

gain M − 1, an improvement in comparison with the existing XOR- based algorithm whose achievable multiplexing 

gain is ⌊M⌋/2.  

 

Keywords: PIN model, Private key capacity, Multiplexing gain, co-operative PIN model, index security. 

 

I. INTRODUCTION 

The pairwise-independent network (PIN) was introduced 

in [1] for secret key generation. Since then, many other 

related works have also investigated a variety of PIN 

models (e.g., [2]– [4]), and each of them aimed to find the 

secret key capacity of a particular PIN model. The PIN 

model is actually a special case of the multi-terminal 

“source model” [5], [6], in which the correlated sources 

observed by every pair of terminals are independent of 

those sources observed by any other pair of terminal. Note 

that the so-call “source model” was first studied by 

Ahlswede and Csisa´r for generating secret keys between 

two terminals using their correlative observations and 

public transmissions [7]. In recent years, the PIN model 

has been applied to practical wireless communication 

networks for key generation. Based on channel reciprocity, 

the correlated source observations in a PIN model can be 

obtained via estimating the wireless fading channels 

associated with legitimate terminals. This is because all 

the wireless channels in a network are mutually 

independent as long as the terminals are half-wavelength 

away from each other [8]. This physical layer (PHY) 

security approach has been recognized as a promising 

solution for generating secret key in recent years (e.g., 

[9]–[12]). Existing works have demonstrated that user 

cooperation can effectively enlarge the key capacity by 

introducing additional helper nodes for cooperative key 

generation [5], [11], [12]. The work in [5] first studied 

cooperative key generation (including the generation of 

secret keys and private keys) in a single-helper discrete 

memoryless source (DMS) model, where the private key 

needs to be protected not only from the eavesdropper but 

also from all the helper node. The works in [11], [12] 

utilized estimates of wireless channels for the key 

generation in cooperative wireless networks, in which the 

relay nodes provide additional resources of wireless fading 

channels. In [11], a relay-assisted algorithm was proposed 

to enhance the secret key rate for the scenario without 

secrecy constraints at relays, and then an XOR-based 

algorithm was proposed to generate a relay-oblivious key, 

(i.e., private key). In [12], a multi-antenna relay was 

considered to help the legitimate terminals to generate a 

secret key, and then the optimal attacker’s strategy was 

characterized to minimize the secret key rate when Eve is 

an active attacker. The problem of private key generation 

is investigated in this paper. We consider a particular 

cooperative PIN model with M + 2 terminals (Alice, Bob, 

M relays) and an eavesdropper (Eve), where M ≥ 2. Under 

the help of relays, Alice and Bob wish to establish a 

private key which should be protected from not only Eve 

but also from individual relays simultaneously. One of the 

main contributions of this paper is to find the private key 
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capacity of this PIN model. To obtain the lower bound, we 

propose a novel algorithm for generating the private key. 

Specifically, using the observations at relays and the 

transmissions over the public channel, Alice and Bob first 

agree on M common messages, each of which is open to a 

certain relay. Then a random binning process is adopted in 

the key distillation step to map these insecure common 

messages into a private key. Such an algorithm is termed 

as the “RB-based algorithm” for simplicity. On the other 

hand, the upper bound of the private key capacity is 

obtained by considering M enhanced source models, each 

of which relaxes the secrecy constraints on some relays, 

and assumes that the relay observations are known by 

Alice or Bob in advance. Such an upper bound is tight and 

matches with the lower bound. The proposed RB-based 

private key generation algorithm in the PIN model can be 

extended to more practical wire- less communications. In 

particular, we consider a cooperative wireless network, in 

which Alice, Bob and the M relays use estimates of 

wireless channels as the correlative source observations. It 

is assumed that Alice and Bob are far away from each 

other, so there does not exist the direct link between Alice 

and Bob. Compared to the XOR-based algorithm in [11] 

whose multiplexing gain is ⌊M⌋/2 for the considered 

wireless network, the proposed RB-based algorithm 

achieves a larger multiplexing gain M − 1. 

II. PAIRWISE INDEPENDENT NETWORK MODEL 

Consider a DMS model, where Alice and Bob, with the 

help of M ≥ 2 relays, wish to establish a private key that 

needs to be protected from Eve and individual relays 

simultaneously. All relays are assumed to be curious but 

honest: they will comply with the proposed transmission 

schemes for helping Alice and Bob to generate a key, but 

would also try to intercept the key information if they can 

[11]. The nodes can communicate to each other over a 

noiseless public channel whose capacity is infinite, but the 

transmitted information over the public channel is also 

available to Eve noisele,ssly. Eve is passive in the sense 

that it only receives but not transmits information. 

 
 

 

Fig 1. The considered cooperative PIN model with M relays 

Pairwise independence does not imply mutual 

independence, as shown by the following example 

attributed to S. Bernstein. Suppose X and Y are two 

independent tosses of a fair coin, where we designate 1 for 

heads and 0 for tails. Let the third random variable Z be 

equal to 1 if exactly one of those coin tosses resulted in 

"heads", and 0 otherwise. Then jointly the triple (X, Y, Z) 

has the following  probability distribution. 

For ∀m ∈ {1,··· ,M}, let Ym,A and YA,m denote the cor- 

relative source observations at Alice and relay m, 

respectively. Ym,B and YB,m denote the correlative source 

observations at Bob and relay m, respectively. 

Specifically, Alice observes n i.i.d. repetitions of random 

variable XA = (Y1,A,··· ,YM,A), denoted by Xn
A
 = (Y 

n
1,A,··· 

,Y 
n
M,A); Bob observes n i.i.d. repetitions of random 

variable XB = (Y1,B,··· ,YM,B), denoted by X
n

 B = (Y 
n
1,B,··· 

,Y 
n
M,B); relay m observes n i.i.d. repetitions of random 

variable Xm = (YA,m,YB,m), denoted by Xn m = (Y 

nA,m,YnB,m). This DMS model is a PIN in the sense that  

I(Yi,α,Yα,i;{Yj,β,Yβ,j : (j,β) 6≠ (i,α)}) = 0, 

for i,j∈ {1,··· ,M};α,β ∈ {A,B}. (1) 

his means that Alice and relay m have access to a pair 

(Ym,A,YA,m) which is independent of any other pair of 

source observations, so is (Ym,B,YB,m). Note that there does 

not exist correlated source observations between Alice and 

Bob, the private key can be generated only via the help 

from the relays. Moreover, we do not consider correlated 

sources observed by any pair of relays, since the common 

randomness shared by any pair of relays cannot contribute 

to the private key rate. More definitions are given as 

follows.  

Without loss of generality, assume that the nodes use the 

public channel to communicate in a round robin fashion 

over q rounds. Let 1 ≤ l ≤ q and 1 ≤ m ≤ M. Specifically, 

relay m transmits during rounds l that satisfy l mod (M+2) 

= m; Alice transmits during rounds l that satisfy l mod (M 

+ 2) = M + 1; Bob transmits during rounds l that satisfy l 

mod (M + 2) = 0.  

A (2n ˜ R1,··· ,2n ˜ Rq) code for the cooperative key 

gener- ation problem consists of : 

(i) M + 2 randomized encoders, one for each 

node. In rounds l satisfying l mod (M + 2) = m, relay m 

generates an index Fl∈ {1,··· ,2n ˜ Rl} according to p(fl|xn 

m,fl−1); in rounds l satisfying l mod (M +2) =M + 1, Alice 

generates an index Fl∈ {1,··· ,2n ˜ Rl} according to p(fl|xn 

A,fl−1); in rounds l satisfying l mod (M + 2) = 0, Bob 

generates an index Fl∈ {1,··· ,2n ˜ Rl} according to p(fl|xn 

B,fl−1). 

(ii) Two decoders, one for Alice (decoder 1) and 

the other for Bob (decoder 2). After receiving the q rounds 

of transmissions (i.e., Fq = {F1,··· ,Fq}) over the public 

channel, decoder 1 generates a random key KA according 

to KA = KA(XnA,Fq); Decoder 2 generates a random key 

KB according to KB = KB(XnB,Fq). 

A private key rate R is said to be achievable if there exists 

a (2n ˜ R1,··· ,2n ˜ Rq) code such that 

Pr(KA≠KB) ≤ ǫ,         (2) 

1/ n H(KA) ≥ R − ǫ, (3) 

1/ n H(KA) ≥ 1/ n log|KA| − ǫ, (4) 

1/ n I(KA;Xn
m
,F

q
) ≤ ǫ, for ∀m ∈ {1,··· ,M},  (5) 

Xn
B=(yn

1,B
2… 

yn
M,B) 

Xn
A=(yn

1,A
2…yn

M,A

)Xn
B=(yn

1,B
2… yn

M,B) 

 

Relay 2 

Relay 1 

Relay M 

Alice  

Eve  

Bob 

Xn
2=(yn

A,2, y
n

a,2) 

Xn
m=(yn

A,m, 

yn
a,m) 

 

Xn
A=(yn

1,A
2…yn

M,A

) 

Xn
1=(yn

A,1, y
n

a,1) 

 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICITCSA 2017  
 

Pioneer College of Arts and Science, Coimbatore 
 

Vol. 6, Special Issue 1, January 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                               114 

where |KA| denotes the size of the alphabet of the key KA. 

Note that the secrecy constraints in (5) implies that the 

relays are assumed to be non-colluding. 

The private key capacity CK is the supremum of all 

achievable rates R. C(d) K is used to denote the private key 

capacity with deterministic encoding and key generation 

functions. According to [5], C(d) K= CK, which means that 

randomization is useless for key generation in the 

addressed source model. 

III. PRIVATE KEY CAPACITY OF PIN MODEL 

For simplicity, we first define 

Ii = min{I(YA,i,Yi,A), I(YB,i,Yi,B),€{1,… M};  (6) 

Furthermore, these parameters are ordered according to 

I(1) ≤ I(2) ≤ ··· ≤ I(M). Then the private key capacity for 

the considered scenario is given in the following theorem. 

Theorem 1: For the considered PIN model with M relays, 

the private key capacity is given by 

CK i-  max ( m€{1,      ,M})  (7) 

Im= I        (8) 

Proof: The achievability part is proved by a novel RB- 

based key generation algorithm that is based on two steps: 

key agreement and key distillation. In the key agreement 

step, Alice and Bob can agree on M common messages, 

each of which is revealed to a certain relay. In the private 

key distillation step, these common messages will be 

mapped into the final private key via a RB-based private-

key codebook. The converse part is proved by deriving the 

upper bounds of M symmetric enhanced channels. Each of 

these enhanced channels relaxes the secrecy constraints 

and assumes Alice and Bob to be genie-aided (i.e., 

knowing part of the sources observed by the relays). The 

details of the proof will be provided as follows 

A. Proof of Achievability Algorithm 1 briefly shows the 

achievable scheme that is based on two steps: key 

agreement and key distillation. Let RA,i = I(YA,i,Yi,A) − ǫ, 

RB,i = I(YB,i,Yi,B) − ǫ for 1 ≤ i ≤ M; Ri = min{Ri,A,Ri,B} = Ii 

− ǫ, and they are ordered according to R(1) ≤ ··· ≤ R(M). 

Besides, Rkey =PM−1 i=1 R(i). 

 

Algorithm 1: Relay-oblivious Key Generation 

• Alice and Relay i agree on a pairwise key WA,i from the 

correlated observations (Y n i,A,Yn A,i); Bob and Relay i 

agree on a pairwise key WB,i from the correlated 

observations (Y n i,B,Yn B,i), i = 1,···M. 

 • Relay i sends WA,i⊕WB,i over the public channel, so 

Alice and Bob can obtain both WA,i and WB,i, i = 1,···M. 

Then they will choose the one with a smaller size as the 

common message, denoted as Wi∈ Wi. Step 2: Key 

Distillation:  

• In advance, randomly grouped all the sequences wM in 

WM into 2n(Rkey−ǫ) bins each with equal amount of 

codewords. All the other nodes also know this private- key 

codebook. 

 • Alice and Bob find the sequence WM = (W1,··· ,WM) in 

the RB based private-key codebook, and choose its bin 

number as the final private key. 

Key Agreement: In the key agreement step, Alice and 

Bob will agree on M common messages. First, each relay i 

and Alice agree on a pairwise key WA,i using their 

correlated sources (Y n A,i,Yn i,A); each relay and Bob agree 

on a pairwise key using their correlated sources (Y n B,i,Y n 

i,B). According to the standard techniques [7] [2], each 

pairwise key WA,i (WB,i) is generated using Slepian-Wolf 

coding and public transmission FA,i (FB,i). Moreover, the 

pairwise keys WA,i and WB,i have the following properties 

[1], [2]: i) They can achieve the rates RA,i and RB,i, 

respectively; ii) They are uniformly distributed and can be 

decoded by both Alice and Bob correctly; iii) The pairs 

{(Wα,i,Fα,i)α∈{A,B},i∈{1,···,M}} are mutually 

independent, due to the definitions of the PIN model. 

Second, each relay i sends out WA,i⊕WB,i over the public 

channel, so Alice and Bob can obtain both the two 

pairwise keys, and choose the one with a smaller size as 

the common message, denoted as Wi. Hence the rate of 

each common message Wi is Ri. According to [11], 1 n 

I(W1,··· ,WM-Fq) ≤ ǫ1. (9) 2) Key Distillation: In the key 

distillation step, both Alice and Bob map all the insecure 

common messages assembled from the key agreement step 

into the unique codeword in the private-key codebook, and 

set the bin number of this codeword as the final private 

key. Note that such a private-key codebookis generated 

based on random binning, so it provides necessary 

randomness such that the bin number is secret from all the 

relays and Eve. 

Remark 1: The main difference between the proposed 

algorithm and the one in [11] lies in the key distillation 

step: the former is based on the RB process and the latter 

is based on an XOR process. In [11], Alice and Bob 

concatenate (W1⊕ W2,··· ,WM−1⊕ WM) as the final 

private key in the key distillation step. Here M is assumed 

to be even.We will provide more details of the RB-based 

codebook in the following. 

 Codebook Generation 

Let wi∈ Wi = {1,··· ,2n
Ri

}, wM = (w1,··· ,wM). Then, based 

on the concept of ran- dom binning, the private-key 

codebook can be constructed. Specifically, randomly and 

uniformly partition all the elements wM in set WM = W1 × 

W2 × ··· × WM into 2n(Rkey−ǫ) bins each with 

2n(R(M)+ǫ) codewords. So each codewordwM can be 

indexed as wM(k,˜ k), where k ∈ {1,··· ,2n(Rkey−ǫ)}, ˜ k ∈ 

{1,··· ,2n(R(M)+ǫ)}. Fig. 2 illustrates the binning assign- 

ment for the private-key codebook, denoted by C, that is 

known by all nodes (including Eve). 

                1    2   …2
n(R

(M)+4 

       

     Bin 1 

      Bin 2 

                       . 

W
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 k k)=w 
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Fig. 2. The binning assignment for the private-key 

codebook, where wM = (w1,··· ,wM) ∈ WM, wi∈ {1,··· 

,2n
Ri

}. 

Decoding and key generation: Based on the common 

messages collected in the key agreement step, Alice and 

Bob can find their corresponding indices in the private-key 

codebook. Specifically, knowing (W1,··· ,WM), Alice finds 

the index pair (k,˜ k) from the private-key codebook such 

that wM(k,˜ k) = (W1,··· ,WM). Then, it sets its key KA = k. 

Similarly, Bob can also correctly find the key KB = k. 

Since the error probability of the event that Alice and Bob 

share the same (W1,··· ,WM) is insignificant, the error 

probability P(KA 6= KB) is arbitrarily small as n → ∞. 

Analysis of the key rate: Since the private-key codebook is 

based on the random binning process, KA is uniformly 

distributed over {1,··· ,2n(Rkey−ǫ)} averaged over the 

code- book (i.e., C). Therefore, it can be obviously 

obtained that H(KA|C) = n(Rkey − ǫ). 

Analysis of the secrecy constraints: For ∀m ∈ {1,··· ,M}, 

we will prove that the generated private key is secret from 

relay m. Define WM = (W1,··· ,WM). Then, averaged over 

C, we have 

I(KA;Fq,Xnm|C)(a) ≤ I(KA;Fq,Wm|C) 

 ≤ I(KA;Wm|C) + I(KA,WM;Fq|Wm,C) 

 (b) ≤I(KA;Wm|C) + nǫ1 = I(KA;Wm|C)  

where (a) is due to the fact that Xn m − (Wm,Fq) − KA is 

a Markov chain; (b) is due to (9) and the fact that KA is 

determined by WM for a given codebook. Furthermore, 

I(KA;Wm|C)=I(KA,WM;Wm|C)−I(WM;Wm|KA,C) 

=I(WM;Wm|C)−H(WM|KA,C)+H(WM|Wm,KA,C) 

=H(Wm|C)−H(WM|KA,C)+H(WM|Wm,KA,C).  

For the first term, obviously we have 

H(W
m

|C) = n
Rm

. (12) Since H(Wi|C) = n
Ri

, we have 

H(W
M

|C) = nPM i=1 R(i). So the second term can be 

obtained as H(W
M

|K 

A,C) = H(W
M

|C) + H(KA|W
M

,C) − H(KA|C) = H(W
M

|C) − 

H(KA|C)= n 

M X i=1 

R(i) − n(Rkey − ǫ)= n(R
(M) 

+ ǫ). (13) 

The third term is bounded in the following lemma.  

Lemma 2: When R(M) = max{R1,··· ,RM} and n is 

sufficiently large, H(W
M

|W
m

,KA,C) ≤ n(R(M) − R
m

 + 

δ(ǫ)). (14) 

Proof: This lemma can be proved using similar methods 

in existing related works, such as [13] (proof of Lemma 

22.3) and [14], with some necessary variations. The details 

are omitted here due to space limitation. Combining (10) 

with (11), (12), (13) and (14), we have 1 n 

I(KA;Fq,Xnm|C) ≤ 1 n I(KA;W
m

|C) + ǫ1 ≤ δ(ǫ) + ǫ1 − ǫ. 

(15) So the private key rate Rkey =PM−1 i I(i) − ǫ is 

achievable. B. Proof of Converse The calculation of the 

upper bound is based on M symmetric enhanced channels. 

For the m-th enhanced source model, m = 1,··· ,M, we 

only consider the secrecy constraint on relay m, and ignore 

the secrecy constraints on all the other relays. Moreover, 

Alice and Bob are assumed to know the observations of 

two subsets of relays a priori, respectively. The definitions 

of the two subsets are given as follows. For a given m ∈ 

{1,··· ,M}, we will form two sets of nodes, i.e., A]m[ and 

B]m[ in the next. First, allocate Alice and Bob to A]m[ 

and B]m[, respectively. Second, for relay i, i 6= m, if 

I(YA,i;Yi,A) > I(YB,i;Yi,B), allocate it to A]m[; 

otherwise, allocate it to B]m[. So I(YB,i;Yi,B) = 

min{I(YA,i;Yi,A),I(YB,i;Yi,B)} if relay i lies in A]m[, 

and I(YA,i;Yi,A) = min{I(YA,i;Yi,A),I(YB,i;Yi,B)} if 

relay i lies in B]m[. Then, assume without loss of 

generality that relays A1, A2, ···, Aj are allocated to A]m[, 

and relays B1, B2, ···, BM−1−j are allocated to B]m[, 0 ≤ 

j ≤ M − 11. Here {A1,··· ,Aj}T{B1,··· ,BM−1−j} = ∅ and 

{A1,··· ,Aj}S{B1,··· ,BM−1−j} = {1,··· ,m − 1,m + 1,··· 

,M}. In other words, A]m[ = {Alice, relays A1, ···, Aj}; 

B]m[ ={Bob, relays B1, ···, BM−1−j}. Now, by the max-

flow principle [1], the max follow between the two sets 

A]m[ and B]m[ can be expressed as Pm i=1 Ii − Im, which 

is the upper bound of the m-th enhanced channel. Due to 

space limitation, the details are omitted here. Choosing the 

smallest bounds among all the M enhanced channels, we 

can obtain CK ≤PM i=1 Ii −maxm∈{1,···,M} Im.  

 

IV. KEY GENERATION IN WIRELESS NETWORK 

In this section, we will extend the RB-based algorithm 

proposed for the PIN model into the wireless network, and 

use the estimates of wireless fading channels as source 

observations for private key generation. 

 

A. Model 

The considered wireless network can be viewed as a 

practical example of the PIN model in Section II. All the 

nodes have a single antenna and are half-duplex 

constrained. In this wireless network, it is assumed that 

there is no direct link between Alice and Bob, since they 

are located far from each other. Denote hA,i (hB,i) as the 

fading channel gains between relay i and Alice (Bob). All 

channels are assumed to be reciprocal. It is reasonable to 

assume that all the fading channel gains and noise are 

random variables and independent of each other. An 

ergodic block fading model is considered, in which all the 

channel gains remain constant for a block of T symbols 

and change randomly to other independent values after the 

current block. For simplicity, we assume hA,i∼ N(0,δA,i), 

hB,i∼ N(0,δB,i). Moreover, none of the nodes knows the 

values of hA,i and hB,i a priori, but all the nodes know 

their statistics. Assume that terminals transmit in a time-

division manner. For L channel uses, let Si = [si(1),··· 

,si(Li)]T , SA = [sA(1),··· ,sA(LA)]T and SB = [sB(1),··· 

,sB(LB)]T de- note the signals sent by relay i, Alice and 

Bob, respectively, where i = 1,··· ,M, and LA + LB +PM 

i=1 Li = L. For simplicity, we consider an equal power 

constraint for the legitimate terminals, that is 1 Li 

E {ST i Si}, 1 LA E {ST ASA}, 1 LB E {ST BSB} ≤ P 
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B. Proposed RB-based Algorithm 

Algorithm can be extended to wireless networks for 

private key generation. Briefly speaking, all the relays, 

Alice and Bob take turns to broadcast training sequences. 

After the channel estimation step, Alice and Bob will 

generate the private key using the RB-based scheme in 

Algorithm 1 (Section III). Now, we will explain the 

1If j = 0, {A1,··· ,Aj} = ∅ and A]m[ = {Alice}; 

if j = M − 1, {B1,··· , Bj} = ∅ and B]m[ = {Bob}. 

channel estimation step in more detail. Fig. 3 shows the 

time frame for the training of the proposed scheme in each 

fading block. Each fading block is divided into M +2 time 

slots, and the numbers of symbols in these time slots are 

T1,··· ,TM, TA, TB, respectively, where TA+TB+PM i=1 

TM = T. Suppose relay i, Alice and Bob sends known 

training sequences Si of size 1 × Ti, SA of size 1 × TA and 

SB of size 1 × TB, respectively. The energy of each 

sequence is ||Si||2 = TiP, ||SA||2 = TAP, ||SB||2 = TBP, 

where || · || denotes the Euclidean norm. 

From n fading blocks, Alice can obtain the estimates(˜ hn 

1,A,··· ,˜ hnM,A); Bob can obtain the estimates (˜ hn 

1,B,··· ,˜ hnM,B); relay i can obtain the estimates (˜ 

hnA,i,˜ hnB,i), i = 1,··· ,M. These estimates are noisy 

versions of the corresponding fading channels. The details 

of this channel estimation step are omitted here due to 

space limitation, and similar works can be found in [11], 

[12]. The rate of each pairwise key Wα,i can be calculated 

as RG α,i =1 2 

log 1 + TiTαP2δ4α,i δ4 + (Ti + Tα)δ2δ2α,iP!, ∀α ∈ 

{A,B},i ∈ {1,··· ,M}, (17) where δ2 is the variance of each 

Gaussian noise. Now, using the result in Theorem 1, the 

proposed RB-based algorithm achieves the private key rate 

RG key for some tuple (TA,TB,T1,··· ,TM), which can be 

written as 

RG key =1 T M X i=1 

IG i − max i∈{1,···,M} 

IG i !, (18) 

with IG i = min{RG A,i,RGB,i}. To further show the 

impact of the proposed scheme on the gain of the key rate, 

the multiplexing gain (introduced in [11]) is analyzed as 

following. Corollary 3: For the considered wireless 

network with M relays, the multiplexing gain of the 

private key rate achieved by the proposed RB-based 

algorithm is M − 1. Proof: Based on the definition of in 

[11], the multiplexing gain of the proposed algorithm 

should be limP→∞ RGkeyRs , where Rs ≈ 1 2T logP as P 

→ ∞. From Eq. (17), it is easy to obtain that limP→∞ RG 

α,iRs = T, so we have limP→∞ RGkeyRs = M − 1. 

Remark 2: If there are no secrecy constraints at the relays, 

the multiplexing gain is M [11]. So the proposed RB-

based algorithm sacrifices one multiplexing gain for 

satisfying the secrecy constraints at all the M relays. This 

loss is insignificant because only one multiplexing gain is 

sacrificed, no matter how large M is. But for the XOR-

based algorithm in [11] (Corollary 10), its multiplexing 

gain is ⌊M/2⌋ if there does exist the direct link between 

Alice and Bob. Therefore this existing scheme suffers a 

loss of M/2 multiplexing gain in comparison with the case 

without secrecy constraints at the relays. Hence the 

proposed RB-based scheme can effectively enhance the 

performance of the private key generation. 

 

V. CONCLUSION 

In this paper, we have investigated the problem of private 

key generation. A particular cooperative PIN model with 

M+2 terminals is considered, where Alice, Bob and M 

relays observe pairwise independent sources. Under the 

help of relays, Alice and Bob wish to establish a private 

key that is secure from Eve and all relays. The private key 

capacity of this PIN model has been found. The 

achievability is proved via a novel RB-based algorithm for 

generating the private key. The upper bound of the private 

key capacity is obtained by considering M enhanced 

source models. Then, we further consider a cooperative 

wireless network, in which estimates of wireless channels 

are regarded as the correlative source observations. 

Compared to the XOR-based algorithm in [11] whose 

multiplexing gain is ⌊M⌋/2, the proposed RB-based 

algorithm achieves a larger multiplexing gain M − 1. 
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